В чем заключается вентильный эффект выпрямительного диода. Принцип работы, характеристика и разновидности выпрямительных диодов. Основные параметры выпрямительных диодов

Известный даже неспециалистам выпрямительный диод – это особый вид приборов на основе полупроводников, используемый с целью получения постоянных напряжений из исходных потенциалов с переменными параметрами. Изделия этого класса относятся к двухэлектродным устройствам с односторонней проводимостью, благодаря которой обеспечивается их выпрямительный эффект (смотрите фото ниже).

Построенные на основе этих элементов диодные выпрямители широко применяются как в электротехнике, так и в современных электронных изделиях. Чаще всего выпрямительные диоды используются в качестве простых одиночных вентилей или в составе более сложных мостовых схем.

Принцип выпрямления

У любого выпрямительного прибора имеется два вывода или электрода, называемых анодом и катодом. Каждый из них соединен с образующими полупроводниковый переход пластинами соответствующей проводимости (анод – с «p», а катод – с «n» слоем). В моменты, когда на анод диода поступает плюс, а на его катод – минус (в случае так называемого «прямого» включения) прибор пропускает ток, находясь в открытом состоянии.

Если же полярность поступающего напряжения меняет свой знак (обратное включение диода), согласно его вольтамперной характеристике, ток через полупроводниковый переход не протекает. В результате односторонней проводимости прибора на его выходе образуется пульсирующий токовый сигнал (он приведен на фото ниже).

Согласно этой схеме после диода VD выпрямленный сигнал Un поступает в нагрузку R (пока без фильтрации), где используется по назначению.

Обратите внимание! Если на вход выпрямительного устройства подать переменное напряжение определенной амплитуды U, ток через него и нагрузку R потечет только в одном направлении.

В результате выпрямления на нагрузке появится серия из положительных полуволн, которые в дальнейшем поступают на электролитические конденсаторы с целью фильтрации. Только после сглаживания пульсаций посредством емкостей можно будет говорить об окончательно выпрямленном напряжении.

Вольтамперная характеристика (ВАХ)

Вольтамперная характеристика рассматриваемого здесь прибора представлена на размещенном ниже рисунке.

Из нее видно, что в первом квадранте осей координат (справа сверху) располагается прямая ветвь зависимости тока Iпр от подаваемого на выпрямитель напряжения Uпр. Своей формой она указывает на низкое сопротивление диода при положительной полярности приложенного к его полюсам потенциала (линейная часть с наклоном, близким к 45 градусам).

В третьем квадранте (слева внизу) располагается обратная ее ветвь, своим горизонтальным положением указывающая на высокое сопротивление p-n перехода.

В этом квадранте напряжение Uобр на полюсах диода имеет отрицательную полярность, вследствие чего ток Iобр через смещенный в обратном направлении переход близок к нулю.

Теория управления p-n переходом

Заложенный в основу любого диодного элемента электронный p-n переход представляет собой двойной слой из насыщенных и обедненных электронами (дырками) областей, которые располагаются одна от другой на удалении порядка размера атома.

Если подать на такой диод напряжение прямой полярности (плюс – на анод, а минус – на катод), электроны из насыщенного ими слоя начинают усиленно диффундировать в область, где их меньше, разгоняясь приложенным положительным потенциалом. В результате этого проводимость слоя резко увеличивается (его сопротивление падает), и ток начинает протекать в прямом направлении. То же самое происходит и с дырками.

В случае, когда к этому же элементу прикладывается напряжение противоположной полярности (потенциалы на аноде и катоде меняются своими знаками), дырки и электроны начинают удаляться от перехода. При этом на его границе образуется потенциальный барьер, не позволяющий носителям зарядов проникать из одной области в другую (смотрите фото ниже).

Вследствие этого эффекта переход находится в состоянии пониженной проводимости (высокого сопротивления), при котором диод не проводит ток. С энергетической точки зрения, оба рассмотренных выше случая сводятся к преодолению электронного барьера, искусственно создаваемого на стыке полупроводников двух проводимостей.

Дополнительная информация. В качестве полупроводников используются известные элементы таблицы Менделеева с явно выраженным полуметаллическим эффектом (индий, германий, кремний и другие).

Из этих материалов и формируются описанные выше p-n переходы, которые при изготовлении размещаются в корпусе готового к применению изделия – диода.

Классификация и характеристики диодов

Все известные типы выпрямительных диодов принято различать по следующим признакам:

  • Величина коммутируемой мощности;
  • Частота переключений;
  • Вид используемого при изготовлении p-n перехода полупроводника.

По первому из этих признаков диоды делятся на маломощные приборы, а также на изделия средней и большой мощности. Указанное деление определяется силой тока, которую способен пропускать через себя p-n переход вентильного элемента при фиксированном напряжении на его электродах. В соответствии с этим признаком, рассматриваемые здесь электронные устройства могут быть разбиты на следующие три группы:

  • Диоды низкой мощности с минимальной величиной выпрямленного (или прямого) тока – до 0,3 Ампер;
  • Приборы средней мощности (от 0,3 до 10 Ампер);
  • Мощные или силовые выпрямительные изделия, значения прямых токов в которых достигает величин порядка десятки и сотни ампер.

По своим частотным параметрам все известные типы диодов делятся на приборы низкой, средней, высокой и сверхвысокой (СВЧ) частоты.

Обратите внимание! Большинство выпрямительных диодов, используемых в качестве вентилей в промышленных и бытовых электрических сетях 50 Герц, относятся к разряду низкочастотных.

По типу используемого при изготовлении диода перехода их принято делить на уже устаревшие германиевые изделия и современные кремниевые выпрямители. В соответствии с рассмотренной классификацией диодных компонентов, вводятся их характеристики, которые представлены следующими рабочими параметрами:

  • Максимальное выпрямляемое (обратное) напряжение;
  • Прямое напряжение на открытом диодном элементе (его падение на смещенном переходе);
  • Допустимое значение пропускаемого через диод прямого тока;
  • Величина допустимого обратного тока;
  • Предельно рассеиваемая на вентиле мощность;
  • Рабочая и максимальная температуры перехода;
  • Допустимая частота коммутируемого сигнала.

Помимо указанных характеристик, которые считаются основными показателями функционирования диодных элементов, существуют и второстепенные, напрямую связанные с уже рассмотренными ранее параметрами. К ним обычно относят такие характеристики, как быстродействие и емкость p-n перехода, а также его дифференциальное и тепловое сопротивления.

Дополнительная информация. Эти параметры востребованы при проектировании сложных электронных схем, а на работу прибора в выпрямительном режиме, как правило, существенного влияния не оказывают.

Добавим к этому, что температурные режимы работы диодного элемента принято относить к его основным параметрам. Для самого распространенного типа этих изделий (кремниевого диода) этот показатель колеблется обычно в диапазоне от -50 до +130 градусов. При конструировании электронной аппаратуры большое внимание уделяется температуре корпуса самого прибора, величина которой зависит от его параметров (типа, мощности и производителя).

Области применения

Выпрямительные элементы вентильного типа в сфере электротехнических и электронных преобразований применяются, как правило, для следующих целей:

  • Коммутация (размыкание и замыкание рабочих цепей);
  • Детектирование и ограничение сигналов различной формы и длительности;
  • Непосредственное выпрямление переменных напряжений, обеспечивающее получение стабильных уровней потенциалов.

Помимо этого, классический выпрямительный диод, изготовленный на основе кремниевых материалов, является основой для создания так называемых «мостовых» схем, включающих в свой состав сразу несколько элементов (фото ниже).

С появлением вентильных сборок из четырех диодов, включенных по встречно-параллельному принципу, существенно упростились сами выпрямительные модули с одновременным облегчением технологии их монтажа.

Благодаря таким замечательным характеристикам, как дешевизна, простота конструкции и надежность в эксплуатации выпрямительные диоды на основе полупроводниковых переходов широко применяются не только в электронных и электротехнических устройствах, но и в такой далекой от них области, как радиотехника.

Дополнительная информация. В радиотехнических устройствах эти элементы используются в высокочастотных режимах, обеспечивая выпрямление, коммутацию и ограничение принимаемых эфирных сигналов.

В заключительной части обзора отметим, что современные выпрямительные диоды представлены большим ассортиментом различных типов и моделей, отличающихся как своим конструктивным исполнением, так и заявленными рабочими характеристиками. Умение правильно обращаться с этими электронными элементами сводится к знанию алгоритма выбора того или иного образца диода, ориентируясь на приведенные в справочных пособиях данные.

Видео

Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов - германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.

Выпрямительные диоды применение нашли в различных электронных, радиотехнических и электрических устройствах. С их помощью осуществляется замыкание и размыкание цепей, детектирование и коммутация импульсов и электрических сигналов, а также другие аналогичные преобразования.

Принцип работы выпрямительного диода

Каждый диод оборудуется двумя выводами, то есть электродами - анодом и катодом. Анод соединяется с р-слоем, а катод - с n-слоем. В случае прямого включения диода на анод поступает плюс, а на катод - минус. В результате, через диод начинает проходить электрический ток.

Если же подачу тока выполнить наоборот - к аноду подать минус, а к катоду - плюс получится так называемое обратное включение диода. В этом случае течения тока уже не будет, на что указывает вольтамперная характеристика выпрямительного диода. Поэтому при поступлении на вход , через диод будет проходить только одна полуволна.

Представленный рисунок наглядно отражает вольтамперную характеристику диода. Ее прямая ветвь расположена в первом квадранте графика. Она описывает диод в состоянии высокой проводимости, когда к нему приложено прямое напряжение. Данная ветвь выражается в виде кусочно-линейной функции u = U 0 + R Д x i, в которой u представляет собой напряжением на вентиле во время прохождения тока i. Соответственно, U 0 и R Д являются пороговым напряжением и динамическим сопротивлением.

Третий квадрант содержит обратную ветвь вольтамперной характеристики, указывающей на низкую проводимость при обратном напряжении, приложенном к диоду. В этом состоянии течение тока через полупроводниковую структуру практически отсутствует.

Данное положение будет правильным лишь до определенного значения обратного напряжения. В этом случае напряженность электрического поля в области p-n-перехода может достичь уровня 105 В/см. Такое поле сообщает электронам и дыркам - подвижным носителям заряда, кинетическую энергию, способную вызвать ионизацию нейтральных атомов кремния.

Стандартная структура выпрямительного диода предполагает наличие дырок и электронов проводимости, постоянно возникающих под действием термической генерации по всему объему структуры проводника. В дальнейшем происходит их ускорение под действием электрического поля p-n-перехода. То есть электроны и дырки также участвуют в ионизации нейтральных атомов кремния. В этом случае обратный ток нарастает лавинообразно, возникают так называемые лавинные пробои. Напряжение, при котором резко повышается обратный ток, обозначается на рисунке в виде напряжения пробоя U3.

Основные параметры выпрямительных диодов

Определяя параметры выпрямительных элементов, следует учитывать следующие факторы:

  • , максимально допустимая при выпрямлении тока, когда устройство еще не может выйти из строя.
  • Максимальное значение среднего выпрямленного тока.
  • Максимальный показатель обратного напряжения.

Выпрямительные устройства выпускаются различной формы и могут монтироваться разными способами.

В соответствии с физическими характеристиками, они разделяются на следующие группы:

  • Выпрямительные диоды большой мощности, пропускная способность которых составляет до 400 А. Они относятся к категории высоковольтных и выпускаются в двух видах корпусов. Штыревой корпус изготавливается из стекла, а таблеточный - из керамики.
  • Выпрямительные диоды средней мощности с пропускной способностью от 300 мА до 10 А.
  • Маломощные выпрямительные диоды с максимально допустимым значением тока до 300 мА.

Выбирая то или иное устройство, необходимо учитывать вольтамперные характеристики обратного и пикового максимальных токов, максимально допустимое прямое и обратное напряжение, среднюю силу выпрямленного тока, а также материал изделия и тип его монтажа. Все основные свойства выпрямительного диода и его параметры наносятся на корпус в виде условных обозначений. Маркировка элементов указывается в специальных справочниках и каталогах, ускоряя и облегчая их выбор.

Схемы с использованием выпрямительных диодов отличаются количеством фаз:

  • Однофазные нашли широкое применение в бытовых электроприборах, автомобилях и аппаратуре для электродуговой сварки.
  • Многофазные используются в промышленном оборудовании, специальном и общественном транспорте.

В зависимости от используемого материала, выпрямительные диоды и схемы с диодами могут быть германиевыми или кремниевыми. Чаще всего применяется последний вариант, благодаря физическим свойствам кремния. Данные диоды обладают значительно меньшей величиной обратных токов при одном и том же напряжении, поэтому допустимое обратное напряжение имеет очень высокую величину, в пределах 1000-1500 вольт.

Для сравнения, у германиевых диодов эта величина составляет 100-400 В. Кремниевые диоды сохраняют работоспособность в температурном диапазоне от - 60 до + 150 градусов, а германиевые - только в пределах от - 60 до + 850С. Электронно-дырочные пары при температуре, превышающей это значение, образуются с большой скоростью, что приводит к резкому увеличению обратного тока и снижению эффективности работы выпрямителя.

Схема включения выпрямительного диода

Простейший выпрямитель работает по следующей схеме. На вход подается переменное напряжение сети с положительными и отрицательными полупериодами, окрашенными соответственно в красный и синий цвета. На выходе подключается обычная нагрузка RH, а выпрямляющим элементом будет диод VD.

Когда на анод поступают положительные полупериоды напряжения, происходит открытие диода. В этот период через диод и нагрузку, запитанную от выпрямителя, будет протекать прямой ток диода Iпр. На графике, расположенном справа, эта волна обозначена красным цветом.

При поступлении на анод отрицательных полупериодов напряжения, наступает закрытие диода, и во всей цепи начинается течение незначительного обратного тока. В данном случае отрицательная полуволна переменного тока отсекается диодом. Эту отсеченную полуволну обозначает синяя прерывистая линия. На схеме условное обозначение выпрямительного диода такое же, как обычно, только поверх значка проставляются символы VD.

В результате, через нагрузку, подключенную через диод к сети, будет протекать уже не переменный, а пульсирующий ток одного направления. Фактически, это и есть выпрямленный переменный ток. Однако такое напряжение подходит лишь для нагрузок малой мощности, запитанных от сети переменного тока. Это могут быть лампы накаливания, которым не требуются особые условия питания. В этом случае напряжение будет проходить через лампу лишь во время импульсов - положительных волн. Наблюдается слабое мерцание лампы с частотой 50 Гц.

При подключении питания с таким же напряжением к приемнику или усилителю мощности, в громкоговорителе или колонках, будет слышен гул с низкой тональностью, частотой 50 Гц, известный как фон переменного тока. В этих случаях аппаратура начинает «фонить». Причиной такого состояния считается пульсирующий ток, проходящий через нагрузку и создающий в ней пульсирующее напряжение. Именно оно и создает фон.

Данный недостаток частично устраняется путем параллельного подключения к нагрузке фильтрующего электролитического конденсатора Сф с большой емкостью. В течение положительных полупериодов он заряжается токами, а во время отрицательных - разряжается с помощью нагрузки RH. Большая емкость конденсатора позволяет поддерживать на нагрузке непрерывный ток в течение всех полупериодов - положительных и отрицательных. На графике такой ток представляет собой сплошную волнистую линию красного цвета.

Тем не менее, данный сглаженный ток все равно не обеспечивает нормальную работу, поскольку половина входного напряжения теряется при выпрямлении, когда задействуется только один полупериод. Этот недостаток компенсируют мощные выпрямительные диоды, собранные вместе в так называемый диодный мост. Данная схема состоит из четырех элементов, что позволяет пропускать ток в течение всех полупериодов. За счет этого преобразование переменного тока в постоянный происходит значительно эффективнее.

Выпрямительный диод - это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой - выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности - от 300 mA до 10 А;
  • большой - более 10 А.

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые - только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция

Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max - прямой ток, который максимально допустим, А.
  • U обрат max - обратное напряжение, которое максимально допустимо, В.
  • I обрат - обратный ток постоянный, мкА.
  • U прям - прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max - рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока

Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост

Диодный мост - это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.

Она имеет две ветви, соответствующие прямому и обратному включению диода.

При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр . Этот ток называется прямым Iпр . Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:

  • 0,7 Вольт для кремниевых диодов,
  • 0,3 Вольт - для германиевых.

Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:

  • пробой - диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
  • обрыв - здесь, думаю, пояснения излишни.

Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр , которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.

Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.

Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.

СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ

Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.

При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн . Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:

Iпр=Uн/Rн - все просто - это закон Ома .

Uн=U-Uоткр - см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода .

Это самое основное, про что надо помнить.

Теперь - несколько схем подключения диодов, часто встречающихся на практике.

Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант - условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.

  1. Диоды могут выступать как "развязывающие" элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А , причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы "или".
  2. Защита от переполюсовки (жаргонное - "защита от дураков"). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
  3. Автоматический переход на питание от внешнего источника. Поскольку диод "открывается", когда напряжение на нем достигнет Uоткр , то при Uвнеш питание осуществляется от внутреннего источника, иначе - подключается внешний.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Выпрямительные диоды применяются в цепях управления, коммутации, в ограничительных и развязывающих цепях, в источниках питания для преобразования (выпрямления) переменного напряжения в постоянное, в схемах умножения напряжения и преобразователях постоянного напряжения, где не предъявляются высокие требования к частотным и временным параметрам сигналов. В зависимости от значения максимального выпрямляемого тока различают выпрямительные диоды малой мощности (\(I_{пр max} \le {0,3 А}\)), средней мощности (\({0,3 А} < I_{пр max} \le {10 А}\)) и большой мощности (\(I_{пр max} > {10 А}\)). Диоды малой мощности могут рассеивать выделяемую на них теплоту своим корпусом, диоды средней и большой мощности должны располагаться на специальных теплоотводящих радиаторах, что предусматривается в т.ч. и соответствующей конструкцией их корпусов.

Обычно, допустимая плотность тока, проходящего через \(p\)-\(n\)-переход, не превышает 2 А/мм2, поэтому для получения указанных выше значений среднего выпрямленного тока в выпрямительных диодах используют плоскостные \(p\)-\(n\)-переходы. Такие переходы имеют существенную емкость, что ограничивает максимальную допустимую рабочую частоту (\(f_р\)) выпрямительных диодов.

Выпрямительные свойства диодов тем лучше, чем меньше обратный ток при заданном обратном напряжении и чем меньше падение напряжения при заданном прямом токе. Значения прямого и обратного токов отличаются на несколько порядков, а прямое падение напряжения не превышает единиц вольт по сравнению с обратным напряжением, которое может составлять сотни и более вольт. Поэтому диоды обладают односторонней проводимостью, что позволяет использовать их в качестве выпрямительных элементов. Вольт-амперные характеристики (ВАХ) германиевых и кремниевых диодов различаются. На рис. 2.3‑1 для сравнения показаны типичные ВАХ для германиевых и кремниевых выпрямительных диодов при различных температурах окружающей среды.

Рис. 2.3-1. Вольт-амперные характеристики выпрямительных диодов при различных температурах окружающей среды

По приведенным ВАХ видно, что обратный ток кремниевых диодов значительно меньше обратного тока германиевых диодов. Кроме того, обратная ветвь вольт-амперной характеристики кремниевых диодов не имеет явно выраженного участка насыщения, что обусловлено генерацией носителей зарядов в \(p\)-\(n\)-переходе и токами утечки по поверхности кристалла. При подаче обратного напряжения превышающего некий пороговый уровень происходит резкое увеличение обратного тока, что может привести к пробою \(p\)-\(n\)-перехода. У германиевых диодов, вследствие большой величины обратного тока, пробой имеет тепловой характер. У кремниевых диодов вероятность теплового пробоя мала, у них преобладает электрический пробой. Пробой кремниевых диодов имеет лавинный характер, поэтому у них, в отличие от германиевых диодов, пробивное напряжение повышается с увеличением температуры. Допустимое обратное напряжение кремниевых диодов (до 1600 В) значительно превосходит аналогичный параметр германиевых диодов.

Обратные токи в значительной степени зависят от температуры перехода. Из рисунка видно, что с ростом температуры обратный ток возрастает. Для приближенной оценки можно считать, что с увеличением температуры на 10 °С обратный ток германиевых диодов возрастает в 2, а кремниевых - в 2,5 раза. Верхний предел диапазона рабочих температур германиевых диодов составляет 75...80 °С, а кремниевых - 125 °С. Существенным недостатком германиевых диодов является их высокая чувствительность к кратковременным импульсным перегрузкам.

Вследствие меньшего обратного тока кремниевого диода его прямой ток, равный току германиевого диода, достигается при большем значении прямого напряжения. Поэтому мощность, рассеиваемая при одинаковых токах, в германиевых диодах меньше, чем в кремниевых. Прямое напряжение при малых прямых токах, когда преобладает падение напряжения на переходе, с ростом температуры уменьшается. При больших токах, когда преобладает падение напряжения на сопротивлении нейтральных областей полупроводника, зависимость прямого напряжения от температуры становится положительной. Точка, в которой отсутствует зависимость прямого напряжения от температуры (т.е. эта зависимость меняет знак), называется точкой инверсии . У большинства диодов малой и средней мощности допустимый прямой ток, как правило, не превышает точки инверсии, а у мощных диодов допустимый ток может быть выше этой точки.