Косвенные измерения примеры. Косвенное измерение. Измерение. Виды измерения


По способу получения значений физической величины измерения могут быть прямыми, косвенными, совокупными и совместными, каждое из которых проводится абсолютным и относительным методами (см. п. 3.2.).

Рис. 3. Классификация видов измерений

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Примерами прямых измерений являются определения длины с помощью линейных мер или температуры термометром. Прямые измерения составляют основу более сложных косвенных измерений.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямыми измерениями, например, тригонометрические методы измерения углов, при которых острый угол прямого треугольника определяют по измеренным длинам катетов и гипотенузы или измерение среднего диаметра резьбы методом трех проволочек или, мощности электрической цепи по измеренным вольтметром напряжению и амперметром силе тока, используя известную зависимость. Косвенные измерения в ряде случаев позволяют получить более точные результаты, чем прямые измерения. Например, погрешности прямых измерений углов угломерами на порядок выше погрешностей косвенных измерений углов с помощью синусных линеек.

Совместными называют производимые одновременно измерения двух или нескольких разноименных величин. Целью этих измерений является нахождение функциональной связи между величинами.

Пример 1. Построение градуировочной характеристики y = f(x) измерительного преобразователя, когда одновременно измеряются наборы значений:

X 1 , X 2 , X 3 , …, X i , …,X n

Y 1 , Y 2 , Y 3 , …, Y i , …,Y n

Пример 2 . Определение температурного коэффициента сопротивления путем одновременного измерения сопротивления R и температуры t , а затем определение зависимости a(t) = DR/Dt :

R 1 , R 2 , …, R i , …, R n

t 1 , t 2 , …, t i , …, t n

Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин.

Пример: значение массы отдельных гирь набора определяют по известному значению массы одной из гирь и по результатам измерений (сравнений) масс различных сочетаний гирь.



Имеются гири массами m 1 , m 2 , m 3 .

Масса первой гири определится следующим образом:

Масса второй гири определится как разность массы первой и второй гирь М 1,2 и измеренной массы первой гири :

Масса третьей гири определится как разность массы первой, второй и третьей гирь (M 1,2,3 ) и измеренных масс первой и второй гирь ():

Часто именно этим путем добиваются повышения точности результатов измерения.

Совокупные измерения отличаются от совместных только тем, что при совокупных измерениях одновременно измеряют несколько одноименных величин, а при совместных – разноименных.

Совокупные и совместные измерения часто применяют при измерении различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины бывают статические, динамические и статистические измерения.

Статические – измерения неизменных во времени ФВ например, измерение длины детали при нормальной температуре.

Динамические – измерения изменяющихся во времени ФВ, например измерение расстояния до уровня земли со снижающегося самолета, или напряжение в сети переменного тока.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

По точности существуют измерения с максимально возможной точностью, контрольно-поверочные и технические.

Измерения с максимально возможной точностью – это эталонные измерения, связанные с точностью воспроизведения единиц физической величины, измерения физических констант. Эти измерения определяются существующим уровнем техники.

Контрольно–поверочные – измерения, погрешность которых не должна превышать некоторое заданное значение. К ним относятся измерения, выполняемые лабораториями государственного надзора за внедрением и соблюдением стандартов и состоянием измерительной техники, измерения заводскими измерительными лабораториями и другие, осуществляемые при помощи средств и методик, гарантирующих погрешность, не превышающую заранее заданного значения.

Технические измерения – измерения, в которых погрешность результата определяется характеристиками средств измерений (СИ). Это наиболее массовый вид измерений, проводится с помощью рабочих СИ, погрешность которых заранее известна и считается достаточной для выполнения данной практической задачи.

Измерения по способу выражения результатов измерений могут быть также абсолютными и относительными.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин, а также на использовании значений физических констант. При линейных и угловых абсолютных измерениях, как правило, находят одну физическую величину, например, диаметр вала штангенциркулем. В некоторых случаях значения измеряемой величины определяют непосредственным отсчетом по шкале прибора, отградуированного в единицах измерения.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы. При относительном методе измерений производится оценка значения отклонения измеряемой величины относительно размера установочной меры или образца. Примером является измерение на оптиметре или миниметре.

По числу измерений различают однократные и многократные измерения.

Однократные измерения – это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений – в значительном снижении влияний случайных факторов на погрешность измерения.

Приведенные виды измерений включают различные методы, т.е. способы решения измерительной задачи с теоретическим обоснованием по принятой методике.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.
  • определение масс гирь набора гирь (1, 2, 2, 5) кг с использованием одной эталонной гири 1 кг и компаратора масс («весов», предназначенных для определения разности масс двух грузов). Компарируют, например:

Эталон с гирей 1 кг из набора; - эталон + гирю 1 кг из набора с гирей 2 кг из набора; - эталон + гирю 1 кг из набора с другой гирей 2 кг из набора; - гири 1 + 2 + 2 кг из набора с оставшейся гирей 5 кг из набора.

Напишите отзыв о статье "Виды измерений"

Отрывок, характеризующий Виды измерений

– Я это и сделаю, – сказал князь Андрей, отходя от карты.
– И о чем вы заботитесь, господа? – сказал Билибин, до сих пор с веселой улыбкой слушавший их разговор и теперь, видимо, собираясь пошутить. – Будет ли завтра победа или поражение, слава русского оружия застрахована. Кроме вашего Кутузова, нет ни одного русского начальника колонн. Начальники: Неrr general Wimpfen, le comte de Langeron, le prince de Lichtenstein, le prince de Hohenloe et enfin Prsch… prsch… et ainsi de suite, comme tous les noms polonais. [Вимпфен, граф Ланжерон, князь Лихтенштейн, Гогенлое и еще Пришпршипрш, как все польские имена.]
– Taisez vous, mauvaise langue, [Удержите ваше злоязычие.] – сказал Долгоруков. – Неправда, теперь уже два русских: Милорадович и Дохтуров, и был бы 3 й, граф Аракчеев, но у него нервы слабы.
– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств . Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения .

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация - от латинского слова "information", что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм - последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа - последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда - это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда - это указание некоему интерфейсу командной строки.

Данные - информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

В зависимости от рода измеряемой величины,
условий проведения измерений и приемов
обработки экспериментальных данных
измерения могут классифицироваться с
различных точек зрения.
С точки зрения общих приемов получения
результатов они разделены на четыре класса:
прямые;
косвенные;
совокупные;
совместные.

Прямое измерение

Косвенное измерение

Косвенные измерения относятся к явлениям, которые непосредственно не
воспринимаются органами чувств и познание которых требует
экспериментальных устройств. Исторической предпосылкой косвенных
измерений было открытие закономерных связей и единства различных
явлений в отдельных областях природы и во всей природе в целом, что
привело к установлению закономерных связей между различными
физическими величинами.

Совокупные измерения

При этом для определения значений искомых
величин число уравнений должно быть не меньше
числа величин. Примером совокупных измерений
являются измерения, когда значение массы
отдельных гирь из набора определяют по
известному значению массы одной из гирь и по
результатам измерений масс различных сочетаний
гирь.

Совместные измерения

В настоящее время все измерения в соответствии с
физическими законами, используемыми при их
проведении, сгруппированы в 13 видов измерений. Им
в соответствии с классификацией были присвоены
двухразрядные коды видов измерений: геометрические
(27), механические (28), расхода, вместимости, уровня
(29), давления и вакуума (30), физико-химические (31),
температурные и теплофизические (32), времени и
частоты (33), электрические и магнитные (34),
радиоэлектронные (35), виброакустические (36),
оптические (37), параметров ионизирующих излучений
(38), биомедицинские (39).

10.

По физическому смыслу измерения можно было бы
делить на прямые и косвенные.
По числу измерений одной и той же величины
измерения делятся на однократные и
многократные. От числа измерений зависит
методика обработки экспериментальных данных.
При многократных наблюдениях для получения
результата измерений приходится прибегать к
статистической обработке результатов наблюдений.
По характеру изменения измеряемой величины в
процессе измерений они делятся на статические и
динамические (величина изменяется в процессе
измерений).

11.

По отношению к основным единицам измерения делятся на
абсолютные и относительные.
Абсолютное измерение – измерение, основанное на прямых
измерениях одной или нескольких основных величин и (или)
использовании значений физических констант. Например,
измерение силы F = mg основано на измерении основной
величины – массы m и использовании физической постоянной
g.
Относительное измерение – измерение отношения величины
к одноименной величине, играющей роль единицы, или
измерение изменения величины по отношению к одноименной
величине, принимаемой за исходную. Например, измерение
активности радионуклида в источнике по отношению к
активности радионуклида в однотипном источнике,
аттестованной в качестве эталонной меры активности.
Существуют и другие классификации измерений, например, по
связи с объектом (контактные и бесконтактные), по условиям
измерений (равноточные и неравноточные).

12.

13.

14.

Методы можно классифицировать по различным признакам.
1. Используемый физический принцип. По нему методы измерений
разделяют на оптические, механические, акустические,
электрические, магнитные и так далее.
2. Режим изменения во времени измерительного сигнала. В
соответствии с ним все методы измерений разделяют на статические
и динамические.
3. Способ взаимодействия средства и объекта измерений. По этому
признаку методы измерений разделяют на контактные и
бесконтактные.
4. Применяемый в средстве измерений вид измерительных сигналов.
В соответствии с ним методы разделяют на аналоговые и цифровые.

15.

Метод непосредственной оценки
Метод измерений, при котором значение величины
определяют непосредственно по показывающему
средству измерений.
Метод сравнения с мерой имеет ряд разновидностей:
метод замещения, метод дополнения, дифференциальный
метод и нулевой метод.

16.

17.

Исключение погрешности измерительного прибора из результата измерений
является новым достоинством метода замещения. Таким образом методом
замещения можно осуществить точное измерение, имея прибор с большой
погрешностью.

18.

Метод замещения является самым точным из всех
известных методов и обычно используется для
проведения наиболее точных (прецизионных)
измерений. Ярким примером метода замещения
является взвешивание с поочередным
помещением измеряемой массы и гирь на одну и
ту же чашку весов (вспомните - на один и тот же
вход прибора). Известно, что таким методом
можно правильно измерить массу тела, имея
неверные весы (погрешность прибора), но никак
не гири! (погрешность меры).

19.

Пример, иногда может быть более точным измерение
массы, при котором уравновешивают гирю, значение
которой известно с высокой точностью, измеряемой
массой и набором более легких гирь, помещенными на
другую чашку весов.

20.

Частным случаем дифференциального метода является нулевой метод
измерений - метод измерений, где в результате эффект действия
измеряемой величины и меры на компаратор доводят до нуля.
В дифференциальном методе погрешность представляет собой
погрешность измерения разности меры и измеряемой
величины. Для получения большой точности измерения
нулевым и дифференциальным методом необходимо, чтобы
погрешности измерительных приборов были невелики.

21.

Сравнивая между собой метод сравнения и метод
непосредственной оценки, мы обнаружим их
разительное сходство. Действительно, метод
непосредственной оценки по своей сути представляет
метод замещения. Почему он выделен в отдельный
метод? Все дело в том, что при измерении методом
непосредственной оценки мы выполняем только
первую операцию – определение показаний. Вторая
операция – градуировка (сравнение с мерой)
производится не при каждом измерении, а лишь в
процессе производства прибора и при его
периодических поверках. Между применением
прибора и его предыдущей поверкой может лежать
большой интервал времени, а погрешность
измерительного прибора за это время может
значительно измениться. Это и приводит к тому, что
метод непосредственной оценки дает обычно меньшую
точность измерения, чем метод сравнения.

22.

A
Градуировочная характеристика (зависимость оптической плотности от концентрации) строится по
стандартным образцам с известной концентрацией

23.

1
3
6 8
9
10
11
6
2
5
7
4
газовый тракт
Блок-схема ХЛ газоанализатора: 1 - заборный
патрубок; 2 - ротаметр, 3 - газовый
коммутатор, 4 - фильтр-поглотитель, 5 калибратор,6 - ХЛ-реактор, 7 - насос, 8 ФЭУ, 9 - усилитель, 10 - процессор, 11 индикатор.

24.

25. Стадии аналитического процесса - отбор пробы, подготовка пробы, измерение и обработка результатов - являются равнозначными

звеньями цепи, каждое из которых несет в себе объективные
и субъективные источники погрешности

1.Методы измерения:прямые и косвенные.Прямые -когда измеряется непосредственно сама измеряемая величина.(измерение темп ртутным термометром)Косвенное -когда измеряется не сама изм.вел. а величины функционально связанные с нею.(измеряют U и R а затем рассчитывают I) По принципу методы измерения делят на: 1Метод непосредственной оценки (измерение длины метром).2Метод сравнения с мерой (измерение массы груза с помощью образцовых гирь)Мера -тех.средство высокой точности измерения. 3Дифференциальный метод -при этом методе измеряется не сама изм.вел R x а ее отклонение от заданной величины R 0 .Для измерения используется специальная мостовая схема кот состоит из 4плеч: R x, R 0 , R 1 , R 2 . В схеме всегда R 1 =R 2 .Балластные сопротивления для повышения точности измерения: СД-диаганаль питания, АВ-измерительная диаганаль.Измерит схема находится в равновесии т.е потенциалы точек АиВ равны(φ А = φ В)Если выполняется условие R x R 2 =R 0 R 1 если R x =R 0 схема находится в равновесии.Если Rx отличается от R 0 то потенциал т.А отличается от потенциала т.В разность потенциалов= ∆φ= φ А -φ В (измеряется прибором).R 0 может состоять из нескольких последовательно включенных сопротивлений разной величины.Такое устройство наз магазином сопротивлений. 4Нулевой метод -при этом методе в качестве изм.прибора используется гальванометр,кот определяет разность потенциалов в изм.диаганале.Если измеряемой сопротивление R x отличается от R 0 то появляется разность потенциалов и перемещая ползунок R 0 добиваются чтобы гальванометр показывал 0.по положению ползунка и шкале определяют значение R x .5Компенсационные метод (является разновидностью нулевого и еще наз методом силовой компенсации)Разность потенциалов усиливается электронным усилителем и постоупает на реверсивный электродвигатель кот начинает перемещать ползунок R 0 и стрелку ук-теля до тех пор пока не сравняются потенциалы точек АиВ.

2.Погрешность измерения делится на Абсалютную,Относительную, Приведенную.1.Абсалютная погрешность -разность между значениями измеряемой величины и ее действит.значением.За дествит.значение принимается показания образцового прибора. ∆ абс =±(А изм -А дейст).2Приведенная -отношениеабсалютной погрешности к нормированному значению,выражается в %. ∆ прив = ∆ абс /N*100.3.Относительная -отношение абсолютной погрешности к измеренной величине,выражается в %.Погрешности могут систематич (обусловлена конструкцией прибора и не зависит от внешних факторов)случайная (зависит от условий измерения,изменение параметров окр.среды,питания)промах (вызвана неправильными действиями оператора)Допустимые погрешности ограничиваются классом точности прибора.Он определяетяс заводом изготовителем и указывается на шкале прибора или в его паспорте. Класс точности-обощенная хар-ка прибора,ограничивающая систематич и случайные погрешности.(1;1,5;2;2,5;3;4)10 n .n-ук-тель степени,единица илиотриц число..Чем не выше цифра класса точности,тем ниже точность измерения(ртутный термометр показвает темп 21,5 а показание образцового термометра-21,9. = ∆ абс /А изм *100%-относительная погрешность.К=∆ абс /N*100%-приведенная погрешность.

3.Автоматич контроль (АК)-задачей является измерение параметров техпроцесса и отображение инфы о текущем значении параметра показывающими и регистрирующими приборами.При автоматич контроле средства автоматизации не вмешиваются в управление техпроцессом даже при создании аварийной ситуации..АК может быть местным и дистанционным.При местном АК датчики и первич. Преобразователи устанавливаются непосредственно на тех.оборудовании.Показывающин приборы могут находиться на оборудовании а регистрирующие на местных щитах кот размещены на раб.месте ОТП. Дистанционный контроль упрощает управлениетехпроцессом.На раб.месте ОТП на щите расположены средства ДУ регулирующими органами(GLE-c этой панели оператор может изменить положение регулирующего органа и по прибору на этой панели контролировать насколько % открылся/закрылся регулирующий орган а по вторичному прибору наблюдать как изменилось значение контролируемого параметра. Автоматич сигнализация- предназначена для сигнализации отклонений значений параметра от заданного значения.Бывает световая и звуковая.Световая(выполняется пневматич или электрич лампами) Звуковая(электрич звонками,сиренами и ревунами).Сигнализация может быть технологич и аварийной.Технологич-предупреждает ОТП что параметр отклонился от нормы.Аварийная-техпроцесс приближается к аварийному состоянию.Используют сирены и ревуны.

4.Автоматич регулирование.САР предназначена для содержания регулируемого параметра на заданном уровне с заданной точностью длительное время.САР работает по след алгоритму:ПП получает онформацию о текущем значении регулируемого параметра и преобразует в унифиц сигнал.Тот поступает на ВП для отображения информации и на АР.АР сравнивает полученную инфу с заданием определяет величину и знак рассогласования и в соответствии с выбранным законом регулирования управляющее воздействие поступает на регулирующий орган кот изменяет энергетичи или технологич потоки и возвращает регулируемую величину к заданному значению.ОТП непосредственно не участчует в упралении а только наблюдает за ходом техпроцесса и при необходимости изменяет задание на АР